更多>>精华博文推荐
更多>>人气最旺专家

万嫣儿

领域:百度知道

介绍:因此,大多数科学家认为,蛋白质是生物体的遗传物质。...

薛昭纬

领域:华夏生活

介绍:中北大学学位论文多晶硅辐射层掺杂改性方法仿真分析软件介绍光源辐射层热电耦合分析本章小结红外光源制造工艺研究工艺介绍清洗工艺氧化工艺低压化学气相淀积(LPCVD)工艺光刻工艺刻蚀工艺红外光源的制作掩膜版设计工艺流程设计本章小结红外光源性能测试特性测试温度特性测试相对光谱测试辐射强度测试不同距离辐射强度测试不同角度辐射强度测试电光转化效率计算本章小结556.总结及展望论文总结56II中北大学学位论文工作展望57参考文献攻读硕士期间发表论文情况致谢III中北大学学位论文第一章绪论课题的研究背景及意义随着科学技术的发展,红外光源在恶劣环境下人员搜救、飞机及船舶线路引航、军事目标识别等光电特征标识领域得到越来越广泛的应用。利来国际app,利来国际app,利来国际app,利来国际app,利来国际app,利来国际app

利来国际老牌博彩手机
本站新公告利来国际app,利来国际app,利来国际app,利来国际app,利来国际app,利来国际app
ea8 | 2018-12-12 | 阅读(799) | 评论(944)
五、关于滑雪服【阅读全文】
利来国际app,利来国际app,利来国际app,利来国际app,利来国际app,利来国际app
mjk | 2018-12-12 | 阅读(20) | 评论(333)
高级销售的进一步分析及总结个人总结,就是把一个时间段的个人情况进行一次全面系统的总检查、总评价、总分析、总研究,分析成绩、不足、经验等。【阅读全文】
ks8 | 2018-12-12 | 阅读(457) | 评论(286)
PAGE第1课时 等比数列的前n项和课后篇巩固探究                 A组1.已知数列{an}的通项公式是an=2n,Sn是数列{an}的前n项和,则S10等于(  )解析∵an+1an=2n+12n=2,∴S10=2(1-210)答案D2.在等比数列{an}中,a2=9,a5=243,则{an}的前4项和为(  )解析因为a5a2=27=q3,所以q=3,a1=a2q=3,S4答案B3.已知等比数列{an}的前n项和为Sn,且a1+a3=,a2+a4=,则Snan=解析设公比为q,则q=a2于是a1+a1=,因此a1=2,于是Sn=21-12n1-12=41-12n,而答案D4.在14与之间插入n个数组成一个等比数列,若各项总和为778,则此数列的项数为(  解析设a1=14,an+2=,则Sn+2=14-解得q=-.所以an+2=14·-1解得n=3.故该数列共5项.答案B5.已知首项为1,公比为的等比数列{an}的前n项和为Sn,则(  )====3-2an解析在等比数列{an}中,Sn=a1-anq1-答案D6.对于等比数列{an},若a1=5,q=2,Sn=35,则an=     .解析由Sn=a1-anq1-q答案207.在等比数列{an}中,设前n项和为Sn,若a3=2S2+1,a4=2S3+1,则公比q=    .解析因为a3=2S2+1,a4=2S3+1,两式相减,得a4-a3=2a3,即a4=3a3,所以q=a4答案38.数列12,24,38,…,n2解析∵Sn=12+222+Sn=122+223由①-②,得Sn=12+122+123∴Sn=2-12答案2-19.已知等比数列{an}满足a3=12,a8=,记其前n项和为Sn.(1)求数列{an}的通项公式an;(2)若Sn=93,求n.解(1)设等比数列{an}的公比为q,则a3=所以an=a1qn-1=48·12(2)Sn=a1(1-由Sn=93,得961-12n=10.导学号04994046已知等差数列{an}的首项为a,公差为b,方程ax2-3x+2=0的解为1和b(b≠1).(1)求数列{an}的通项公式;(2)若数列{an}满足bn=an·2n,求数列{bn}的前n项和Tn.解(1)因为方程ax2-3x+2=0的两根为x1=1,x2=b,可得a-3+2=0,ab2-3b+2=0(2)由(1)得bn=(2n-1)·2n,所以Tn=b1+b2+…+bn=1×2+3×22+…+(2n-1)·2n,①2Tn=1×22+3×23+…+(2n-3)·2n+(2n-1)·2n+1,②由①-②,得-Tn=1×2+2×22+2×23+…+2·2n-(2n-1)·2n+1=2(2+22+23+…+2n)-(2n-1)·2n+1-2=2·2(1-2n)1-2-(2n-1)·2n+1-2=(3所以Tn=(2n-3)·2n+1+组1.等比数列{an}的前n项和为Sn,若S2n=3(a1+a3+…+a2n-1),a1a2a3=8,则Sn=++1解析显然q≠1,由已知,得a1(1-q整理,得q=2.因为a1a2a3=8,所以所以a2=2,从而a1=1.于是Sn=1-2n1-2答案A2.已知数列{an}是首项为1的等比数列,Sn是{an}的前n项和,且9S3=S6,则数列1an的前5项和为(或解析由题意易知公比q≠1.由9S3=S6,得9·a1(1-所以1an所以其前5项和为S5=1×答案C3.在等比数列{an}中,a1+a2+…+a5=27,1a1+1a2+…+1a5A.±±解析设公比为q,则由已知可得a两式相除,得a12q4=9,即a32=9,所以a答案C4.若等比数列{an}的前n项和为Sn,且S1,S3,S2成等差数列,则{an}的公比q=    .解析由题意,得a1+(a1+a1q)=2(a1+a1q+a1q2),又a1≠0,q≠0,故q=-.答案-+322+423+解析设Sn=1+322+423+…+n2n-1+n+12n,则Sn=22所以Sn=3-n+3答案3-n6.若等比数列{an}的【阅读全文】
wnj | 2018-12-12 | 阅读(442) | 评论(44)
7jv | 2018-12-12 | 阅读(705) | 评论(927)
若能由同学之间讨论,师生共同交流,调动学生自己的生活经历和情感体验,那么学生的理解触类旁通,集思广益,不但是多方面的,而且也要深刻得多。【阅读全文】
m7g | 2018-12-11 | 阅读(56) | 评论(603)
一、热力环流的形成过程二1、2、3、4、同一地点,海拔越高,气压越低高空为高压,则近地面为低压。【阅读全文】
7kl | 2018-12-11 | 阅读(166) | 评论(982)
根据史籍的记载,“中秋”一词最早出现在《周礼》一书中。【阅读全文】
x6c | 2018-12-11 | 阅读(335) | 评论(310)
;(二)压力管道的结构设计;PVC-UH管材EagleLoc连接结构;滑动支座的做法;(三)附属设施—消防与通风系统1、GB50838-2015第条,电力电缆的舱室应每隔200m采用耐火极限不低于的不燃性墙体进行分隔。【阅读全文】
利来国际app,利来国际app,利来国际app,利来国际app,利来国际app,利来国际app
wx6 | 2018-12-11 | 阅读(121) | 评论(303)
作品在央视一套黄金档播出后,不仅收视创下佳绩,还荣获第31届“飞天奖”优秀电视剧大奖、第29届中国电视金鹰奖优秀电视剧奖。【阅读全文】
gtp | 2018-12-10 | 阅读(957) | 评论(862)
语教学实际上是思维的教学。【阅读全文】
eu7 | 2018-12-10 | 阅读(124) | 评论(844)
本届金鹰节还新增“中国文联终身成就电视艺术家”奖,文艺家李准、剧作家王朝柱获此殊荣。【阅读全文】
dua | 2018-12-10 | 阅读(449) | 评论(769)
安全狗攻防实验室第一时间关注了事件进展。【阅读全文】
evm | 2018-12-10 | 阅读(868) | 评论(516)
 导数在实际生活中的应用学习目标重点难点1.学会解决利润最大,用料最省,效率最高等优化问题.2.学会利用导数解决生活中简单实际问题,并体会导数在解决实际问题中的作用.3.提高将实际问题转化为数学问题的能力.重点:用导数解决实际生活中的最优化问题.难点:将实际问题转化为数学问题.导数在实际生活中的应用导数在实际生活中有着广泛的应用.例如,用料最省、利润最大、效率最高等问题,常常可以归结为函数的______问题,从而可用________来解决.预习交流1做一做:有一长为16m的篱笆,要围成一个矩形场地,则此矩形场地的最大面积为______m2.预习交流2做一做:做一个无盖的圆柱形水桶,若需使其体积是27π,且用料最省,则圆柱的底面半径为______.预习交流3用导数求解生活中的优化问题时应注意哪些问题?在预习中还有哪些问题需要你在听课时加以关注?请在下列表格中做个备忘吧!我的学困点我的学疑点答案:预习导引最值 导数预习交流1:提示:设矩形长为xm,则宽为(8-x)m,矩形面积S=x(8-x)(8>x>0),令S′=8-2x=0,得x=4.此时S最大=42=16(m2).预习交流2:提示:设半径为r,则高h=eq\f(27,r2),∴S=2πr·h+πr2=2πr·eq\f(27,r2)+πr2=eq\f(54π,r)+πr2,令S′=2πr-eq\f(54π,r2)=0,得r=3,∴当r=3时,用料最省.预习交流3:提示:(1)在求实际问题的最大(小)值时,一定要考虑实际问题的意义,不符合实际意义的值应舍去.(2)在解决实际优化问题时,不仅要注意将问题中涉及的变量关系用函数关系表示,还应确定出函数关系式中自变量的定义区间.(3)在实际问题中,有时会遇到函数在区间内只有一个点使f′(x)=0的情形,如果函数在这点有极大(小)值,那么不与端点值比较,也可以知道这就是最大(小)值.一、面积、体积最大问题如图所示,有一块半椭圆形钢板,其长半轴长为2r,短半轴长为r.计划将此钢板切割成等腰梯形的形状,下底AB是半椭圆的短轴,上底CD的端点在椭圆上,记CD=2x,梯形面积为S.(1)求面积S以x为自变量的函数式,并写出其定义域;(2)求面积S的最大值.思路分析:表示面积时,首先要建立适当的平面直角坐标系,借助椭圆的方程,可表示出等腰梯形的高.用总长为的钢条制作一个长方体容器的框架,如果所制作容器的底面的一边比另一边长,那么高为多少时容器的容积最大?并求出它的最大容积.1.求面积、体积的最大值问题是生活、生产中的常见问题,解决这类问题的关键是根据题设确定出自变量及其取值范围,利用几何性质写出面积或体积关于自变量的函数,然后利用导数的方法来解.2.必要时,可选择建立适当的坐标系,利用点的坐标建立函数关系或曲线方程,有利于解决问题.二、费用最省问题如图所示,设铁路AB=50,B,C之间距离为10,现将货物从A运往C,已知单位距离铁路费用为2,公路费用为4,问在AB上何处修筑公路至C,可使运费由A至C最省?思路分析:可从AB上任取一点M,设MB=x,将总费用表示为变量x的函数,转化为函数的最值求解.某单位用2160万元购得一块空地,计划在该地块上建造一栋至少10层、每层2000平方米的楼房.经测算,如果将楼房建为x(x≥10)层,则每平方米的平均建筑费用为560+48x(单位:元).为了使楼房每平方米的平均综合费用最少,该楼房应建为多少层?eq\b\lc\(\rc\(\a\vs4\al\co1(注:平均综合费用=平均建筑费用+平均购地费用,平\b\lc\\rc\(\a\vs4\al\co1(,,,,,))))eq\b\lc\\rc\)(\a\vs4\al\co1(均购地费用=\f(购地总费用,建筑总面积)))1.求实际问题的最大(小)值时,一定要从问题的实际意义去考虑,不符合实际意义的理论值应舍去;2.在实际问题中,有时会遇到函数在区间内只有一个点使f′(x)=0的情形,如果函数在这点有极大(小)值,那么不与端点值比较,也可以知道这就是最大(小)值;3.在解决实际优化问题中,不仅要注意将问题中涉及的变量关系用函数关系式给予表示,还应确定函数关系式中自变量的取值范围,即函数的定义域.三、利润最大问题某汽车生产企业上年度生产一品牌汽车的投入成本为10万元/辆,出厂价为13万元/辆,年销售量为5000辆.本年度为适应市场需求,计划提高产品档次,适当增加投入成本,若每辆车投入成本增加的比例为x(0<x<1),则出厂价相应提高的比例为,年销售量也相应增加.已知年利润=(每辆车的出厂【阅读全文】
k6p | 2018-12-09 | 阅读(590) | 评论(466)
(12分)真题再现研考情明方向内力作用形成断层,断裂面两侧岩体以垂直方向运动为主,A侧岩体相对上升,形成断块山;B侧岩体相对下降,形成谷地,同时流水等外力不断将风化、侵蚀产物搬运到谷地边缘堆积,形成洪积-冲积平原。【阅读全文】
qi6 | 2018-12-09 | 阅读(576) | 评论(453)
住建部《建设工程文件归档整理规范》(GB/T50328-2014)条款规定,工程文件的内容必须真实、准确,与工程实际相符合。【阅读全文】
共5页

友情链接,当前时间:2018-12-12

利来国际ag国际厅 w66.com 利来国际最给利的老牌 利来娱乐w66 利来电游彩金
利来ag旗舰厅手机版 利来娱乐国际最给利老牌网站是什么 利来娱乐帐户 利来国际娱乐
利来国际官网w66 利来国际W66 利来国际w66平台 利来网上娱乐 利来国际备用
利来国际 利来国际娱乐 利来国际旗舰版 利来国际旗舰版 利来国际游戏平台
定陶县| 永川市| 开鲁县| 安达市| 常熟市| 南汇区| 侯马市| 黄龙县| 日照市| 台中县| 湘阴县| 克什克腾旗| 舒兰市| 广水市| 工布江达县| 平乐县| 宁陕县| 辉县市| 竹山县| 休宁县| 长葛市| 历史| 浪卡子县| 横峰县| 孟连| 南华县| 英吉沙县| 德格县| 静海县| 磐安县| 固始县| 古丈县| 光泽县| 莱西市| 中西区| 木里| 古交市| 克东县| 林甸县| 呈贡县| 大丰市| http:// http:// http:// http:// http:// http://